- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kangjie Lu (1)
-
Lu, Kangjie Lu (1)
-
Pakki, Aditya (1)
-
Wu, Qiushi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Today’s software programs are bloating and have become extremely complex. As there is typically no internal isolation among modules in a program, a vulnerability can be exploited to corrupt the memory and take control of the whole program. Program modularization is thus a promising security mechanism that splits a complex program into smaller modules, so that memory-access instructions can be constrained from corrupting irrelevant modules. A general approach to realizing program modularization is dependence analysis which determines if an instruction is independent of specific code or data; and if so, it can be modularized. Unfortunately, dependence analysis in complex programs is generally considered infeasible, due to problems in data-flow analysis, such as unknown indirect-call targets, pointer aliasing, and path explosion. As a result, we have not seen practical automated program modularization built on dependence analysis. This paper presents a breakthrough---Type-based dependence analysis for Program Modularization (TyPM). Its goal is to determine which modules in a program can never pass a type of object (including references) to a memory-access instruction; therefore, objects of this type that are created by these modules can never be valid targets of the instruction. The idea is to employ a type-based analysis to first determine which types of data flows can take place between two modules, and then transitively resolve all dependent modules of a memory-access instruction, with respect to the specific type. Such an approach avoids the data-flow analysis and can be practical. We develop two important security applications based on TyPM: refining indirect-call targets and protecting critical data structures. We extensively evaluate TyPM with various system software, including an OS kernel, a hypervisor, UEFI firmware, and a browser. Results show that on average TyPM additionally refines indirect-call targets produced by the state of the art by 31%-91%. TyPM can also remove 99.9% of modules for memory-write instructions to prevent them from corrupting critical data structures in the Linux kernel.more » « less
-
Detecting missing-check bugs via semantic- and context-aware criticalness and constraints inferencesLu, Kangjie Lu; Pakki, Aditya; Wu, Qiushi (, Proceedings of the 28th USENIX Conference on Security Symposium)null (Ed.)
An official website of the United States government

Full Text Available